

Royal Society of New Zealand International Leader Catalyst Fellow Department of Computer Science

Topology

• Geometry

Combinatorics

Algorithms and Software

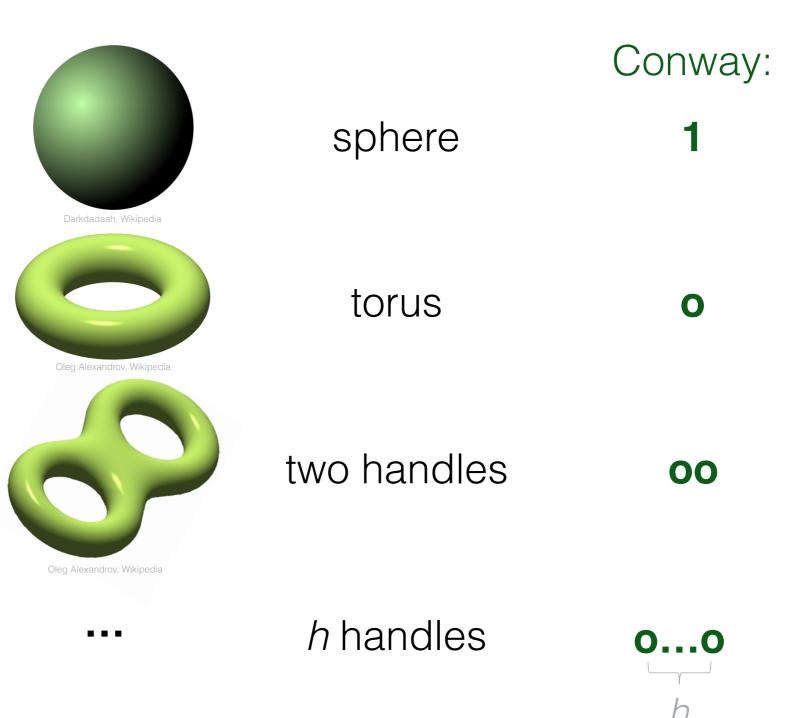
Topology

• Geometry

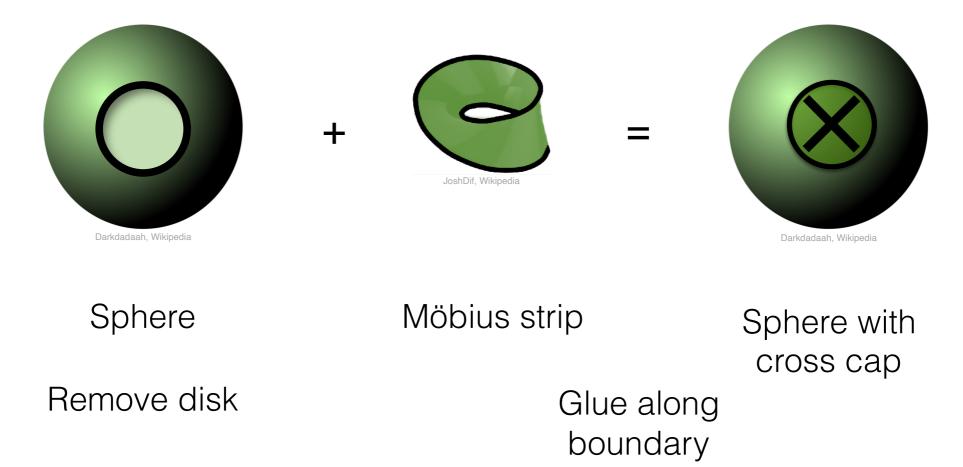
Combinatorics

Algorithms and Software

Classification of orientable closed surfaces

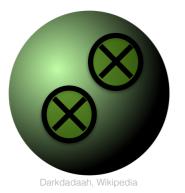


Classification of non-orientable closed surfaces

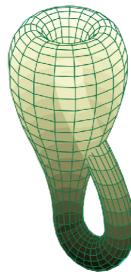


sphere & cross cap projective plane

sphere & two cross caps



Klein bottle



XX

Connected sum of two projective planes

Tttrung, Wikipedia

Classification of non-orientable closed surfaces

Darkdadaah, Wikipedia

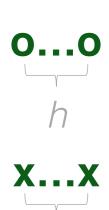
...

Classification of closed surfaces

Theorem

Any connected closed surface is either a

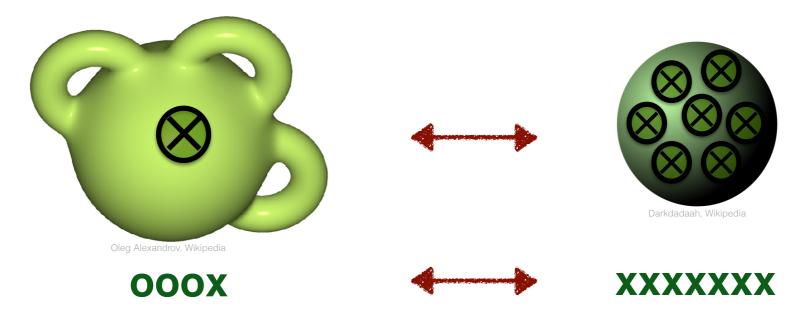
- sphere,
- sphere with h > 0 handles, or
- sphere with k > 0 cross caps.



Classification of closed surfaces

Do not need to combine **both** handles and cross caps

- Non-orientable surface:
- Can replace *one* handle by *two* cross caps:



Surfaces with boundary

Example: sphere with three disks removed

Example: two-handled sphere with four disks removed

Surfaces with boundary

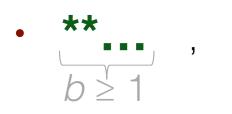
Möbius strip

Classification of surfaces

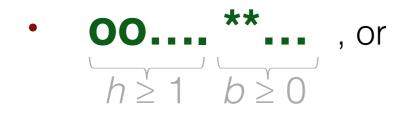
Theorem

Any connected surface, closed or with boundary, has Conway (orbifold) symbol

sphere



sphere with *b* disks removed

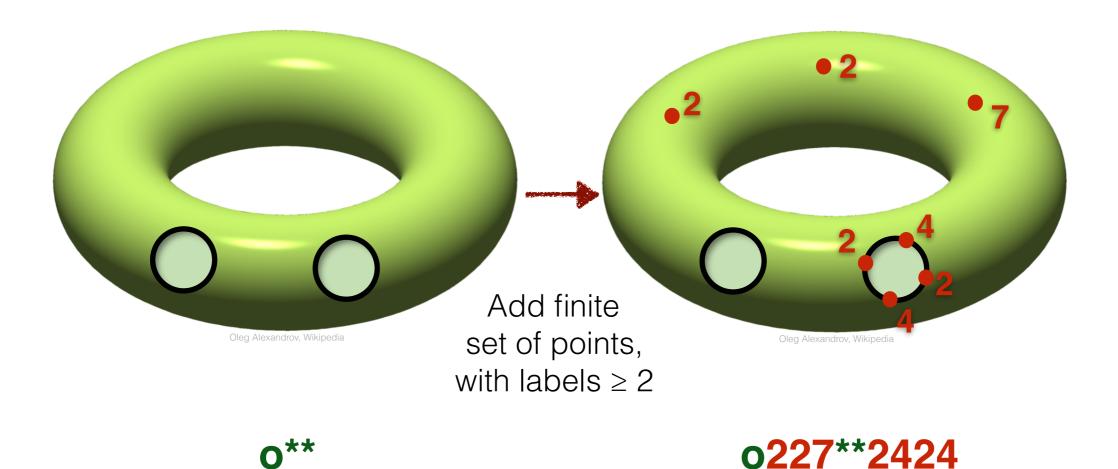


sphere with *h* handles, and *b* disks removed

sphere with *k* cross caps, and *b* disks removed

Two-dimensional orbifolds

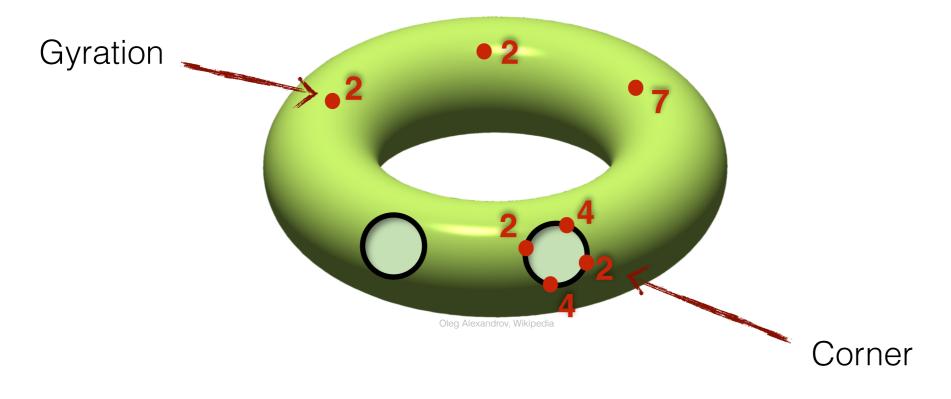
Orbifold = orbit manifold, W. Thurston



Daniel Huson, 2020

J.H. Conway and D.H.H. (2002) Orbifold notation for two-dimensional groups.

Two-dimensional orbifolds



o227**2424

An orbifold is a topological space together with an "orbifold structure", but we skip the details here.

Daniel Huson, 2020

J.H. Conway and D.H.H. (2002) Orbifold notation for two-dimensional groups.

Conway's orbifold notation

0...0*ABC*...**rpq*...**rpq*...*...x

handles gyrations corners corners cross caps

Daniel Huson, 2020 J.H. Conway and D.H.H. (2002) Orbifold notation for two-dimensional groups.

Topology

• Geometry

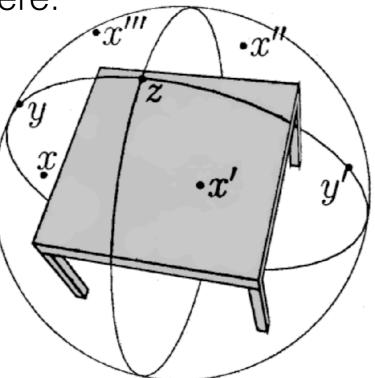
Combinatorics

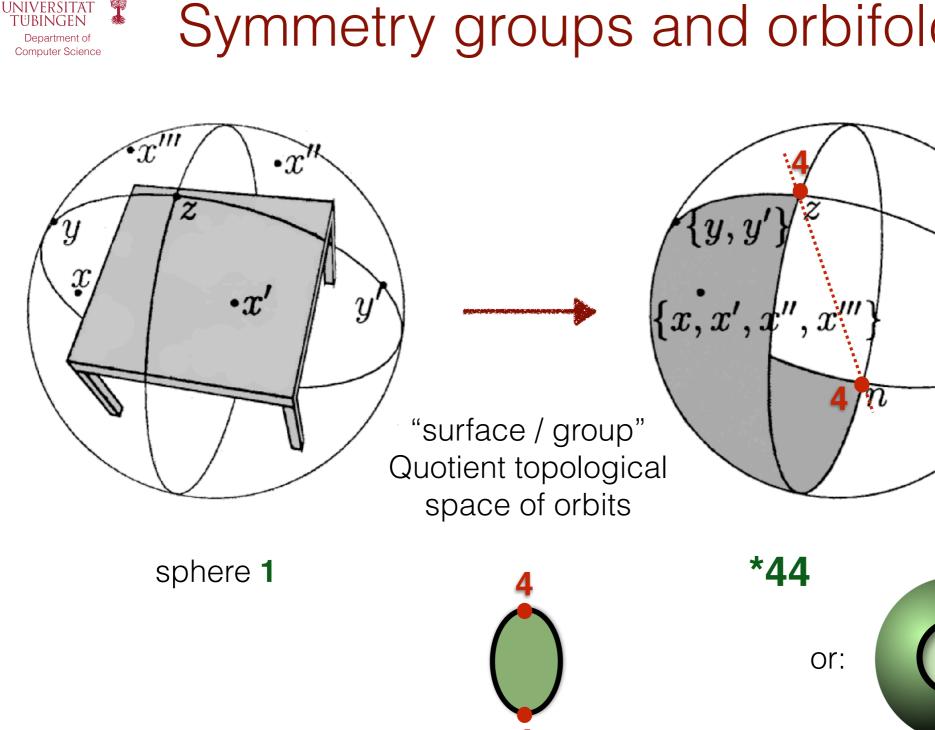
Algorithms and Software

Symmetry groups

• We will consider 2D symmetry groups with compact fundamental domain.

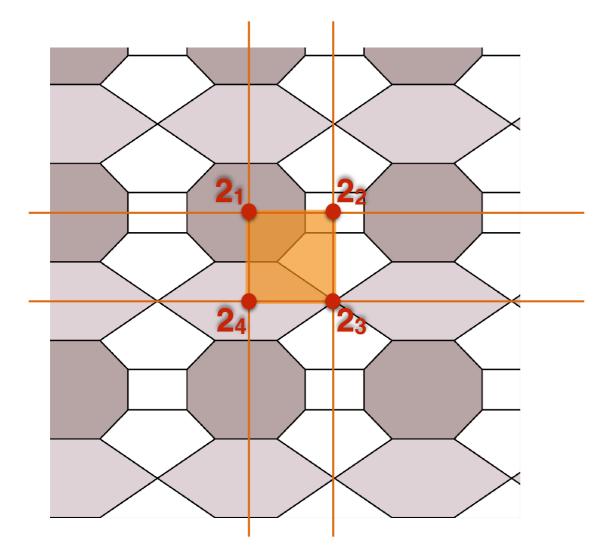
Example: symmetries of an object, acting on an enclosing sphere:

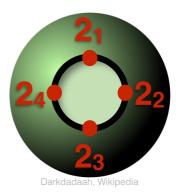




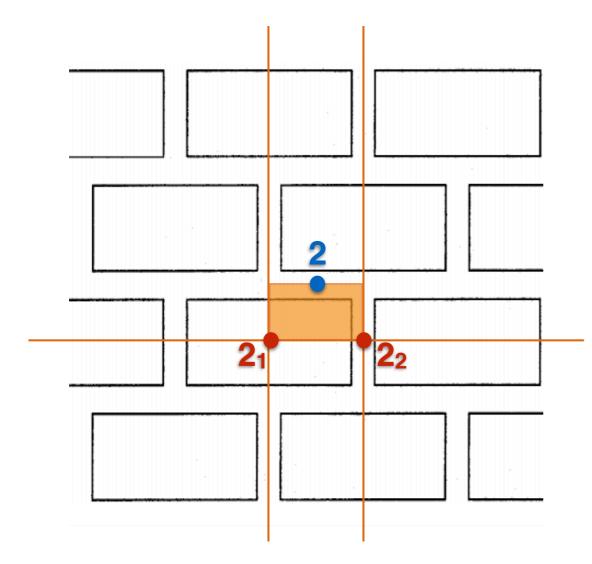
EBERHARD KARLS

Darkdadaah, Wikipedia



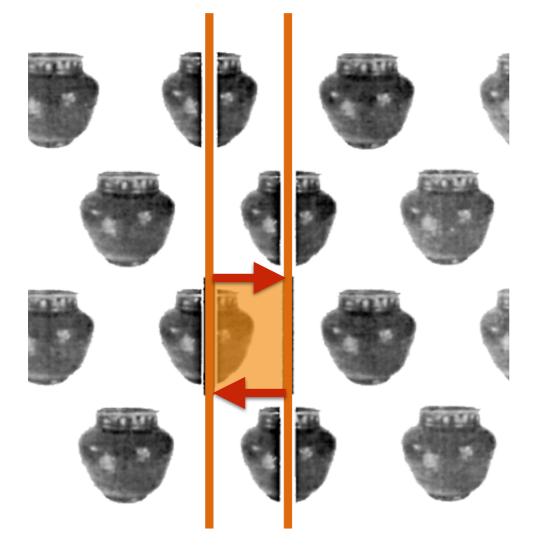


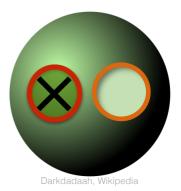
*2222

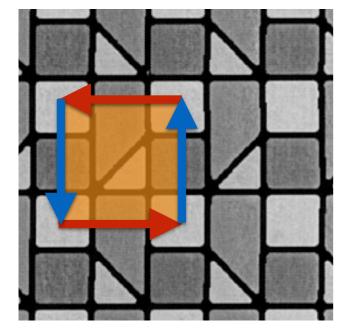


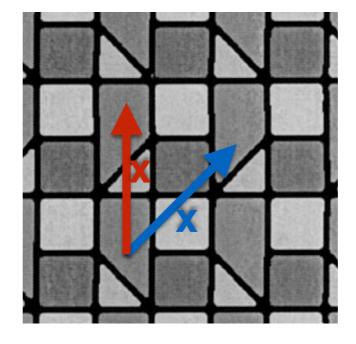


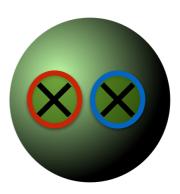
2*22



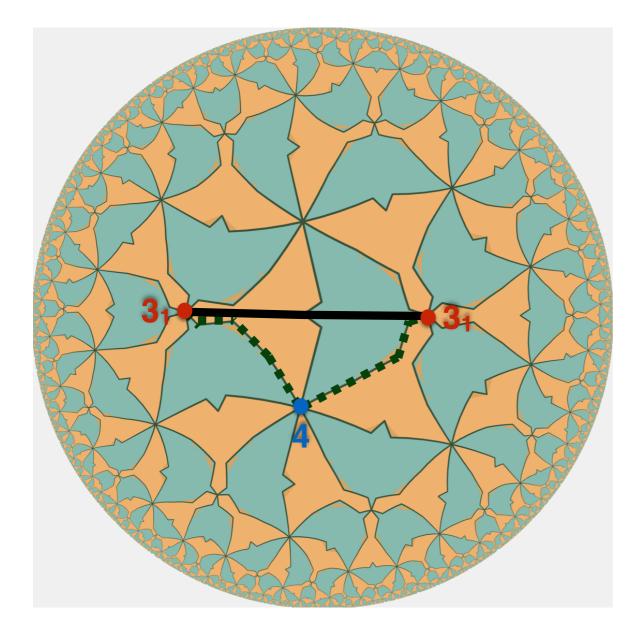








XX



4*3

Any 2D orbifold with symbol o...oABC...*abc...*rpq...*.x...x

can be obtained as

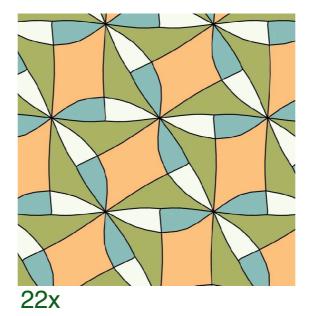
- \mathbb{S}^2 / an orthogonal group,
- \mathbb{E}^2 / a crystallographic group, or
- \mathbb{H}^2 / a NEC group,

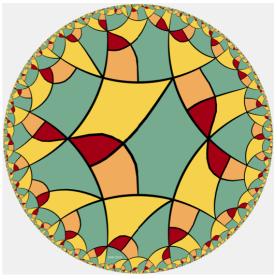
except for the "bad orbifolds"

- p, pq, *p and *pq (with p, $q \ge 2$, $p \ne q$).

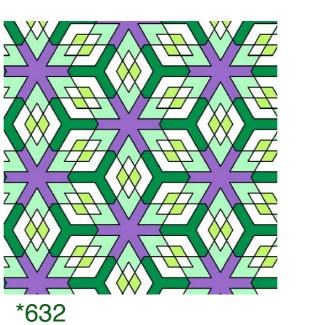
Periodic tilings

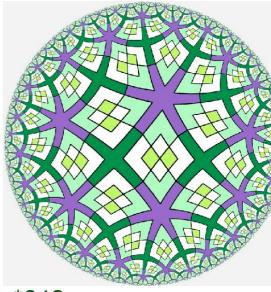
*532





2xx





*642

Topology

• Geometry

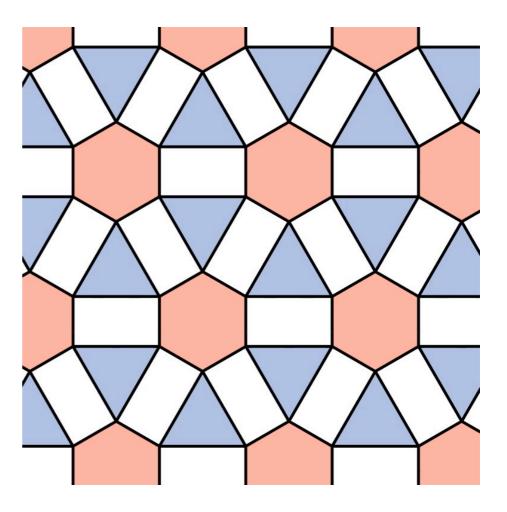
Combinatorics

Algorithms and Software

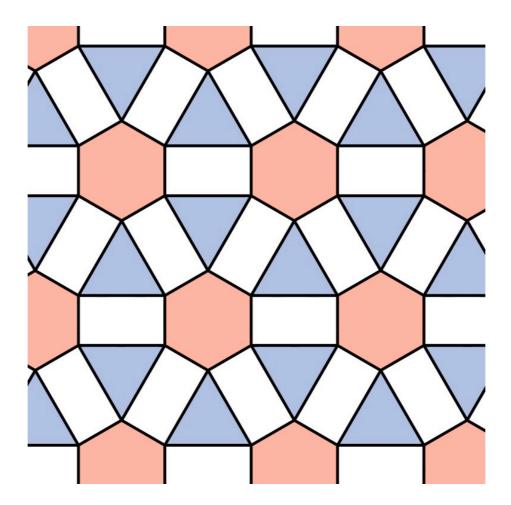
Equivariant tilings

Equivariant tiling (\mathcal{T}, Γ) :

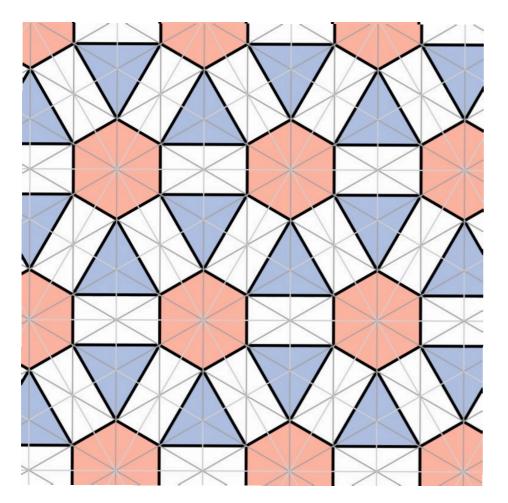
- Tiling ${\cal T}$
- Prescribed symmetry group Γ

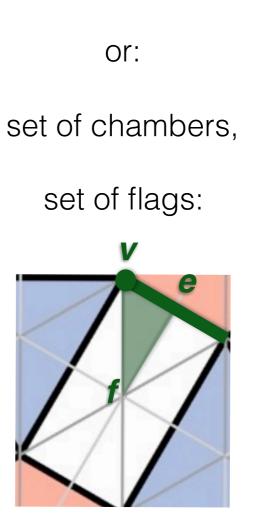


How to capture the combinatorial structure of such a tiling (T,Γ) ?



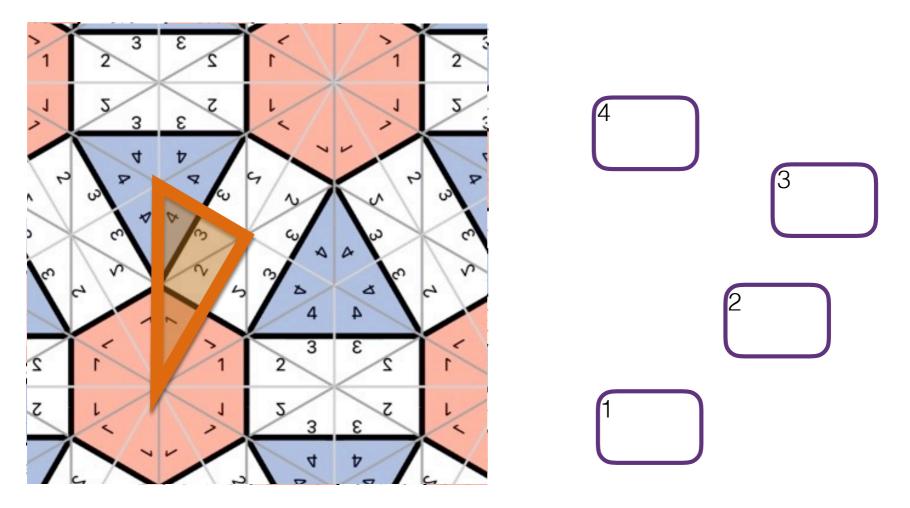
• Barycentric subdivision:



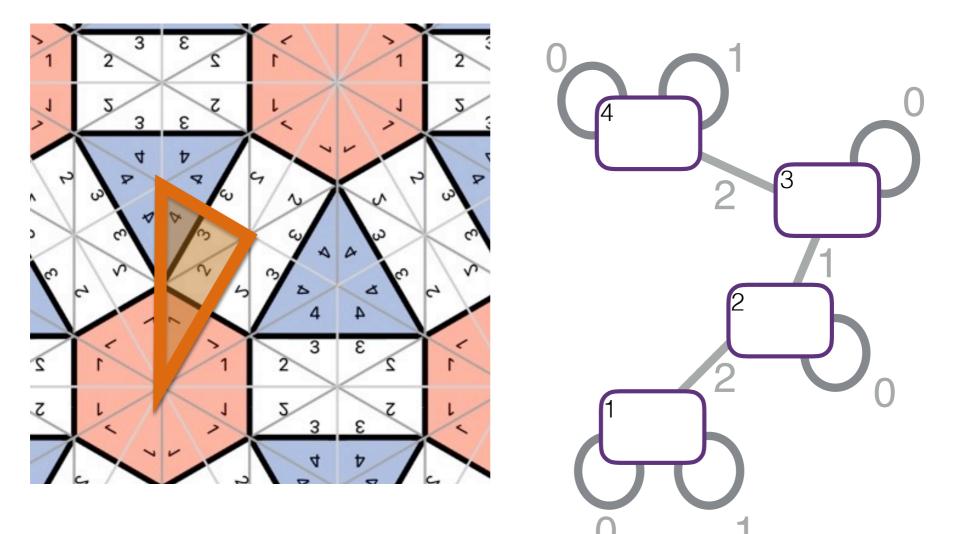


 (V, \mathcal{O}, f)

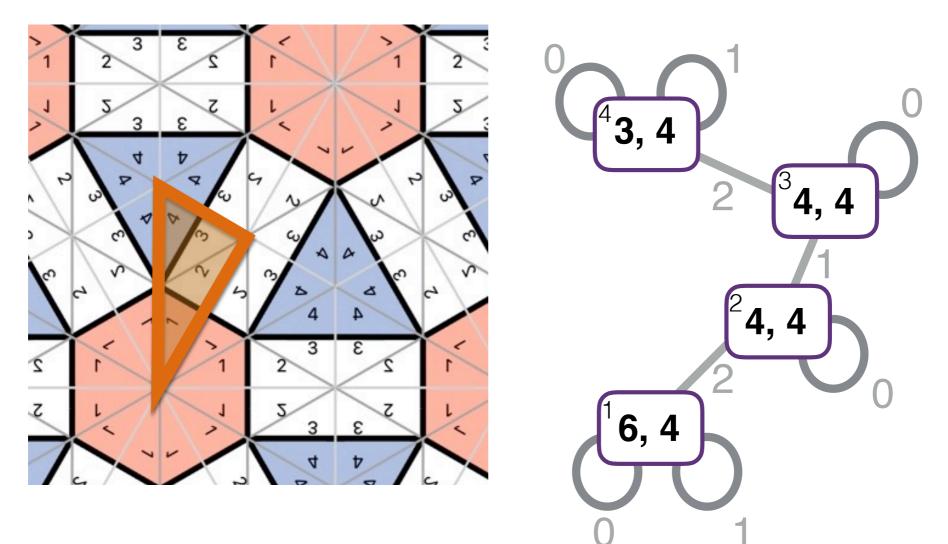
• Consider orbits under symmetry group Γ:



• Neighborhood relationships:

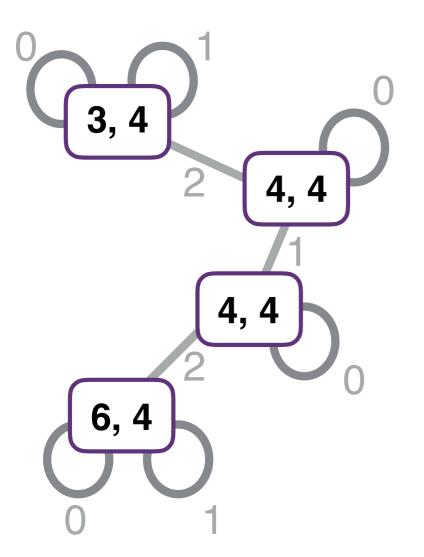


• Face degrees and node degrees:



Delaney-Dress symbol

Delaney-Dress symbol (\mathcal{D},m) :



- \mathcal{D} = set of nodes
- $\Sigma = \langle \sigma_0, \sigma_1, \sigma_2 \rangle$ set of edges (involutions)
- face degrees
 - m01: $\mathcal{D} \rightarrow \{1, 2, \ldots\}$
- node degrees:
 - m12: D → {3,4,...}

+ conditions

A.W.M. Dress (1985) Regular polytopes and equivariant tessellations from a combinatorial point of view

Key Observation

Lemma (A.W.M. Dress)

Two equivariant tilings $(\mathcal{T}_1, \Gamma_1)$ and $(\mathcal{T}_2, \Gamma_2)$ are *equivalent*, iff their Delaney-Dress symbols (\mathcal{D}_1, m_1) and (\mathcal{D}_2, m_2) are *isomorphic*.

A.W.M. Dress and D.H.H. (1987) On tilings of the plane.

Equivalence classes of

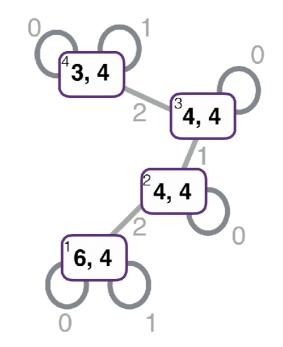
- tiles: 0-1-components
- edges: 0-2-components
- vertices: 1-2-components

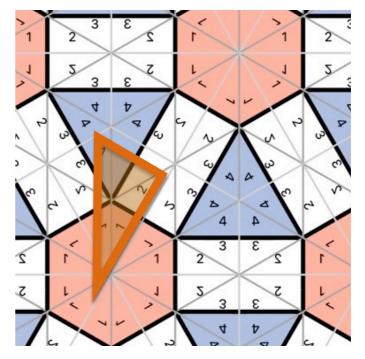
Here:

EBERHARD KARLS

Department of Computer Science

- tiles: 3
- edges: 2
- vertices: 1





Advanced properties

- Euler characteristic
- Curvature
- Geometry
- Orbifold name

Advanced properties

Curvature:

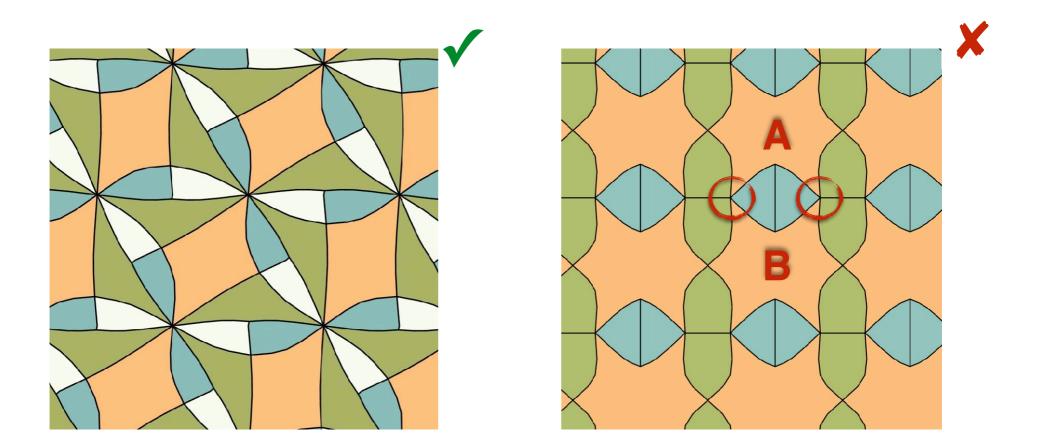
$$\mathcal{K}(\mathcal{D},m) = \sum_{D \in \mathcal{D}} \Big(\frac{1}{m_{01}(D)} + \frac{1}{m_{12}(D)} - \frac{1}{2} \Big)$$

determines geometry:

- > 0: spherical
- = 0: euclidean
- < 0: hyperbolic

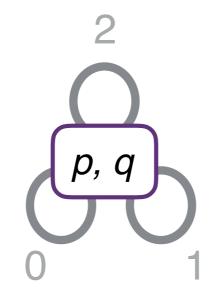
Difficult property:

• Tiling is *pseudo convex* if the intersection of any two tiles is either empty or connected:



Simplest property

• $|\mathcal{D}|$ "Dress complexity"

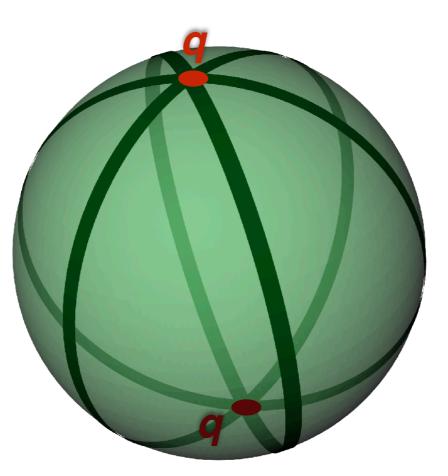


 $p \ge 2, q \ge 3$

Dress complexity $|\mathcal{D}|=1$:

• p = 2: always spherical:

$$\mathcal{K}(\mathcal{D},m) = \frac{1}{2} + \frac{1}{q} - \frac{1}{2} = \frac{1}{q} > 0$$

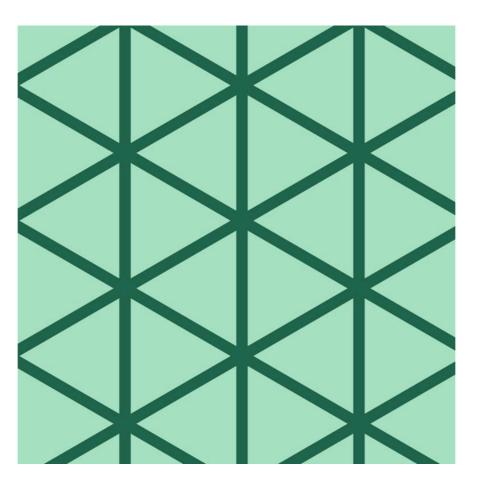


*q22

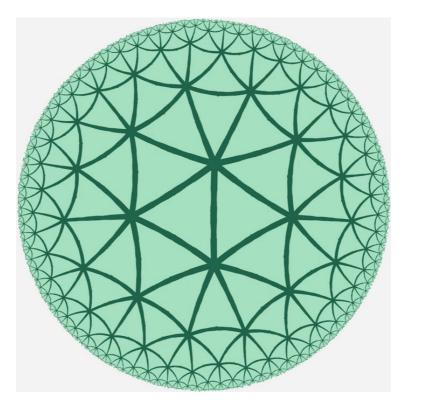
•
$$p = 3, q = 3$$
: $\mathscr{K}(\mathscr{D}, m) = \frac{1}{3} + \frac{1}{3} - \frac{1}{2} = \frac{1}{6} > 0$

• We have: q = 3, 4, 5 spherical

• p = 3, q = 6: $\mathscr{K}(\mathscr{D}, m) = \frac{1}{3} + \frac{1}{6} - \frac{1}{2} = \frac{1}{6} = 0$



•
$$p = 3, q = 7$$
: $\mathscr{K}(\mathscr{D}, m) = \frac{1}{3} + \frac{1}{7} - \frac{1}{2} < 0$



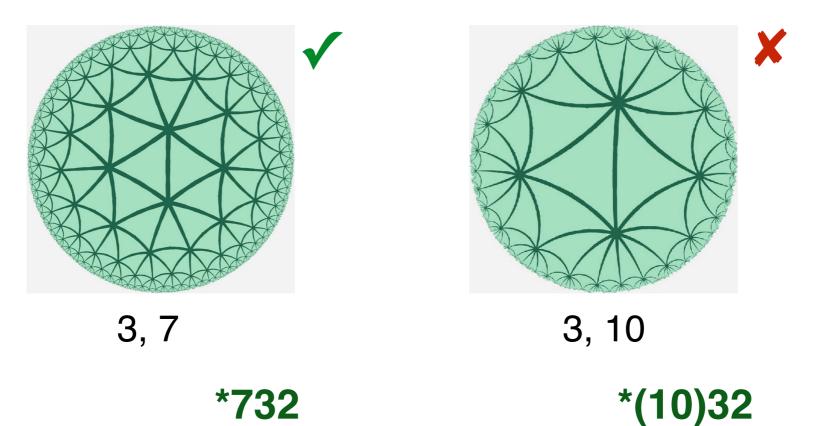
*732



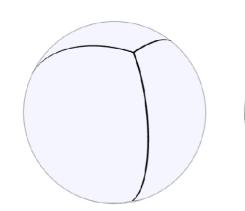
. . .

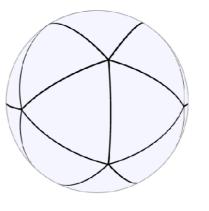
Geometry minimal

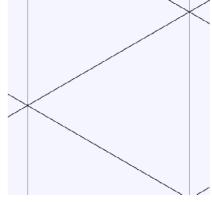
• (\mathcal{D},m) is geometry minimal if either *spherical* with $v_{01}(D) \leq 5$ and $v_{12}(D) \leq 5$, or *euclidean*, or *hyperbolic* and can't reduce $v_{01}(D)$ or $v_{12}(D)$, for any $D \in \mathcal{D}$, without changing sign of curvature (i.e. geometry)

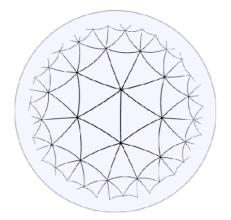


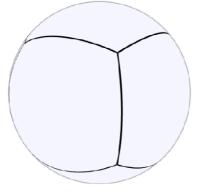
All geometry-minimal with $|\mathcal{D}|=1$: (P \ge 3,Q \ge 3)

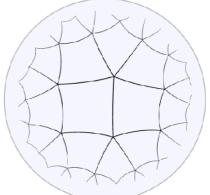


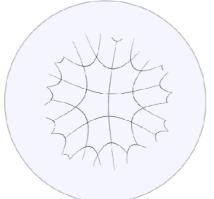


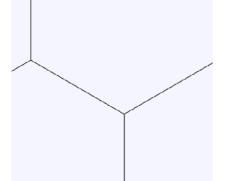


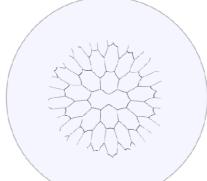






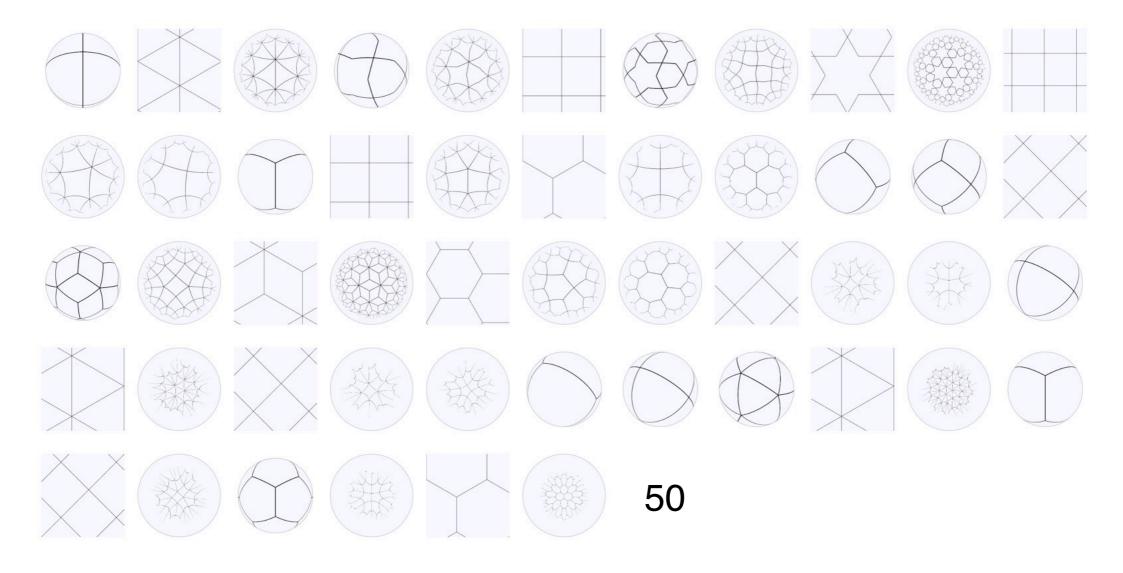






12

All geometry-minimal with $|\mathcal{D}|=2$: (P \ge 3,Q \ge 3)



A GALAXY OF PERIODIC TILINGS

• All geometry-minimal with $|\mathcal{D}| \le 24$:

2,395,220,319

• of which:

- 2,155,818 are spherical and
- 1,728,488 euclidean.

Unpublished, with Olaf Delgado and Rüdiger Zeller

Topology

• Geometry

Combinatorics

Algorithms and Software

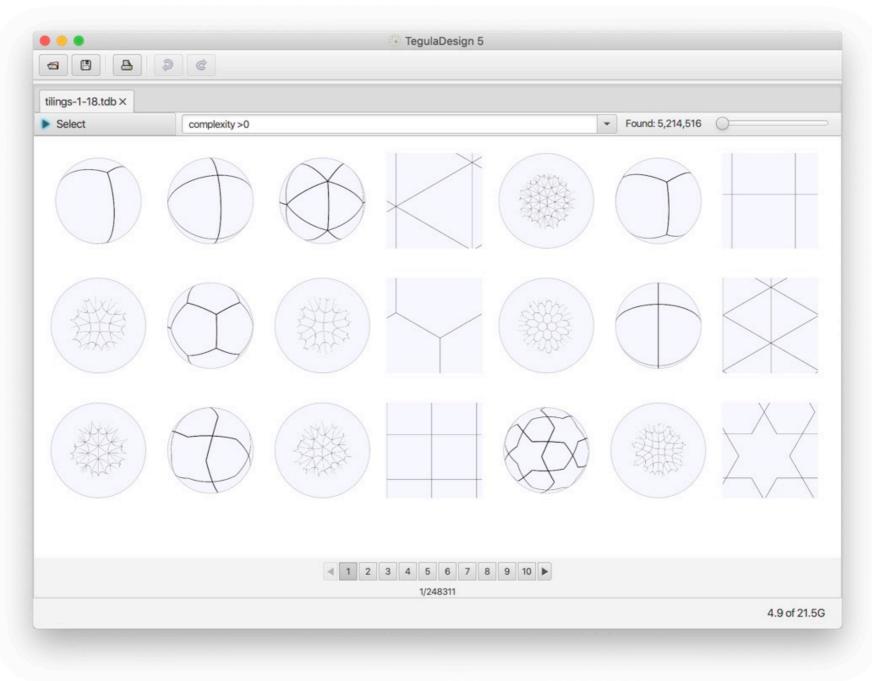
- Orderly generation
- Program written in Julia
- Takes a few hours for $|\mathcal{D}| \le 24$

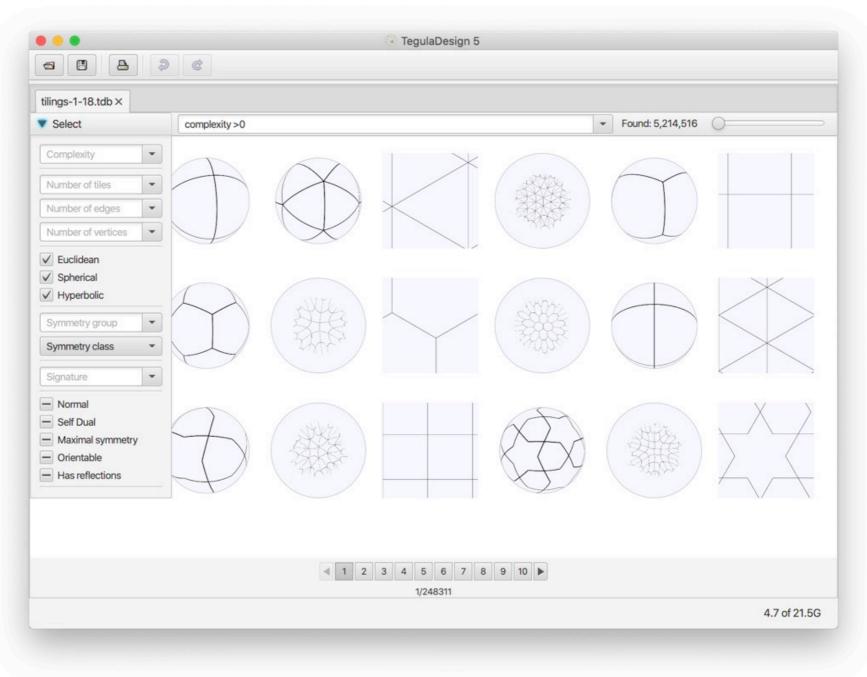
Olaf Delgado

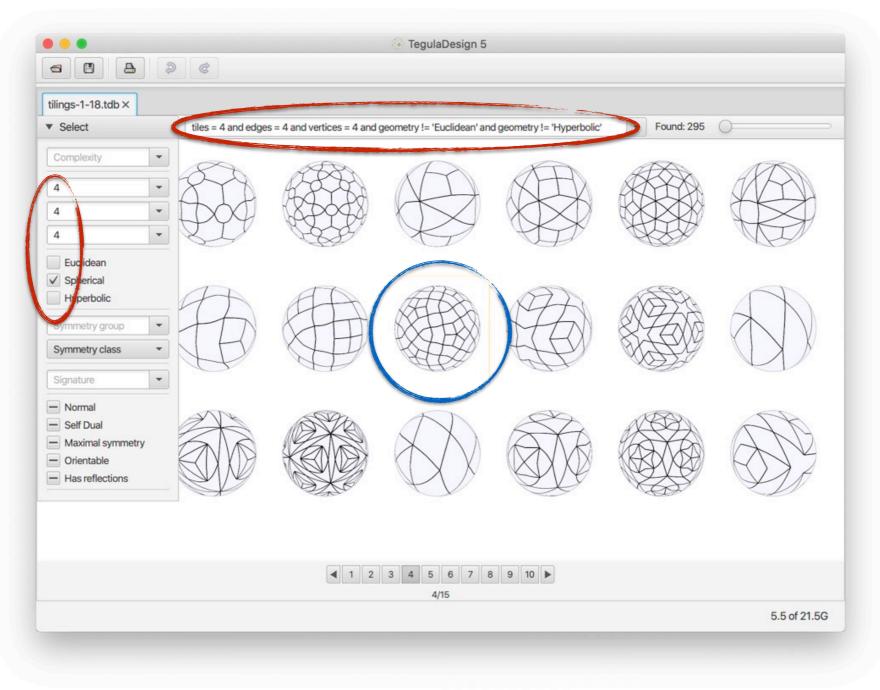
Visualization and exploration

with Rüdiger Zeller

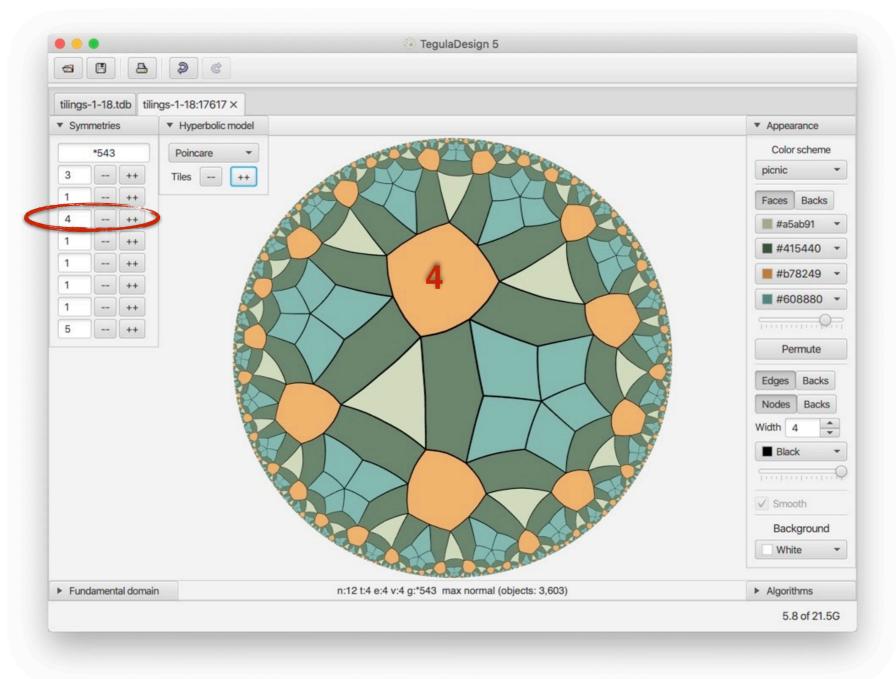
- Interfaces database of Delaney-Dress symbols
- Supports complex queries
- Algorithm for constructing fundamental domain (Klaus Westphal, diploma thesis 1991)
- Algorithms for copying fundamental domain
- Euclidean, spherical and hyperbolic geometry
- User interaction

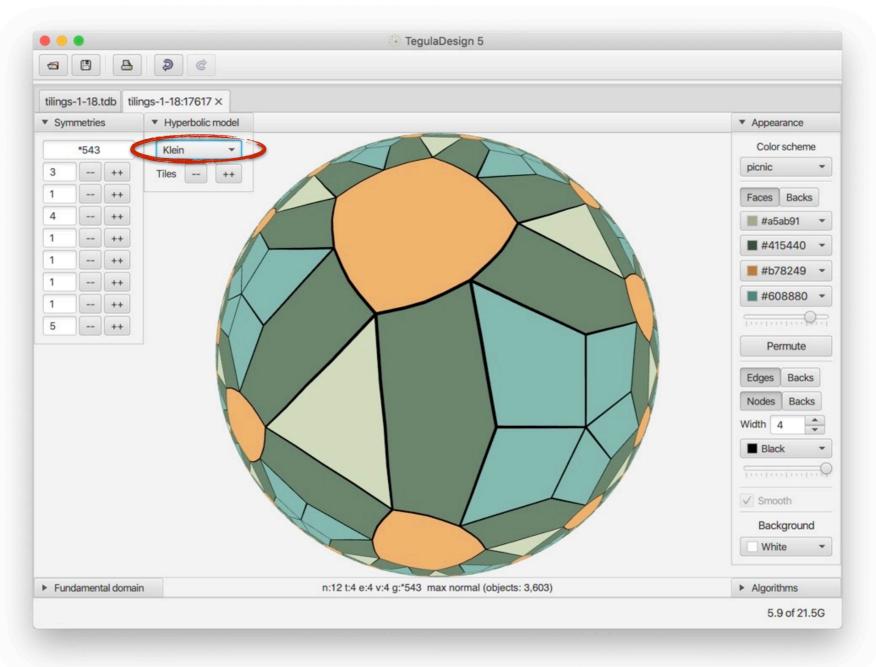




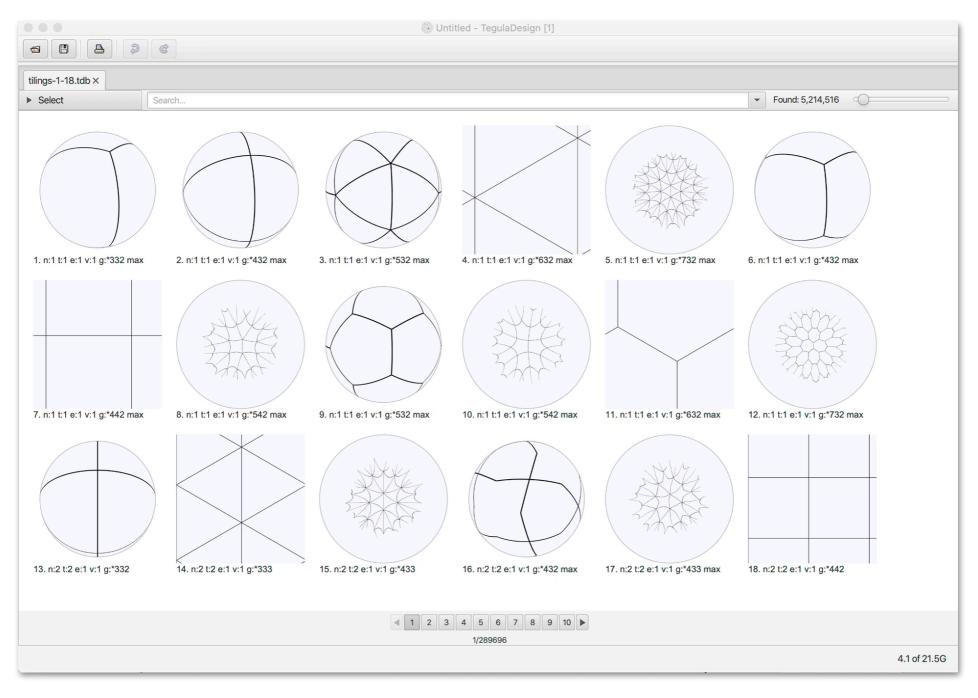


▼ Symmetries ► Hyperbolic model		▼ Appearance
*532		Color scheme
3 ++		picnic
1 ++		Faces Backs
2 ++		# #a5ab91
1 ++		#415440
1 ++		# b78249
1 ++	XIIIIII	#608880
1 ++		
5 ++		
		Permute
 Fundamental domain 	$X \times Y \mapsto X \wedge X$	Edges Backs
Reset Update		Nodes Backs
		Width 4
		Black -
•		
		✓ Smooth
	T	Smooth Background
		Smooth Background White
		Background

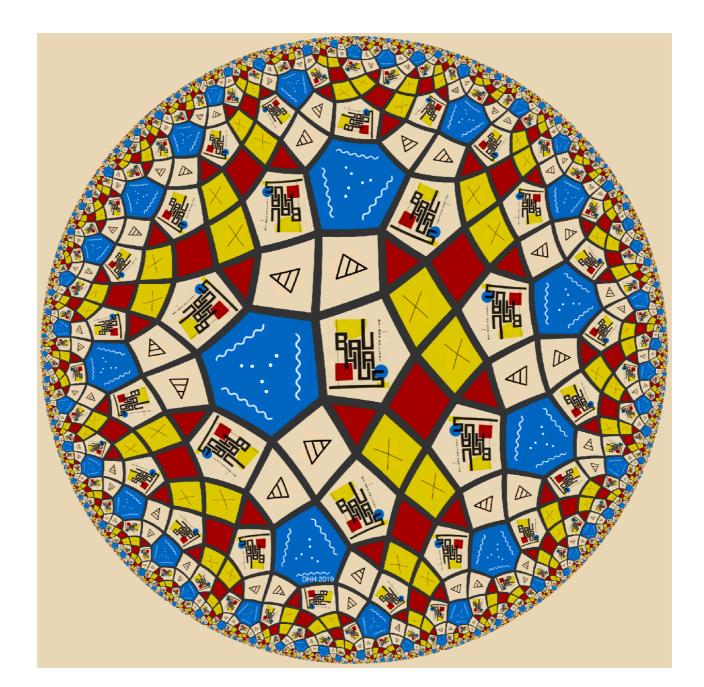




Using Tegula



TegulaDesign



- Orbifold notation for 2D symmetry groups
- Delaney-Dress symbols for equivariant tilings
- A galaxy of periodic tilings:
 - 2.4 billion 2D tilings with Dress complexity \leq 24
- Tegula software

Acknowledgments

• Rüdiger Zeller

- Olaf Delgado
- Klaus Westphal

• Andreas Dress

Tegula runs on Linux, MacOS and Windows tegula.husonlab.org