Infroduction to Microbiome Analysis using DIAMOND+MEGAN

Daniel H. Huson

August 2021

Institute for Bioinformatics and Medical Informatics

- Introduction to microbiome analysis
- Protein alignment against the NCBI-nr database
- Who is out there, what are the doing, how do they compare?
- MEGAN taxonomic and functional binning
- The DIAMOND+MEGAN pipeline
- Long-read metagenomics

- Introduction to microbiome analysis
- Protein alignment against the NCBI-nr database
- Who is out there, what are the doing, how do they compare?
- MEGAN taxonomic and functional binning
- The DIAMOND+MEGAN pipeline
- Long-read metagenomics

Microbiome

- Traditionally, microbes are studied in pure culture
- Genome:
 - Entire DNA sequence of a single organism
- But: most microbes don't live in isolation and many can't be cultured
- Microbiome:
 - Collection of microbes in a specific theatre of activity

www.physorg.com

- Metagenome:
 - Entire DNA sequence of a microbiome

Sources of Studied Microbiomes

- Soil samples
- Water samples
- Seabed samples
- Air samples
- Ancient bones
- Host-associated samples
- Human microbiome

• First NGS technique 454 released

• Intended for genome sequencing...

★Use NGS to sequence ancient DNA?

★Use NGS to sequence metagenomic DNA?

NGS = next generation sequencing

high-density picolitre reactors Marcel Margulies¹⁺, Michael Egholm¹⁺, William E. Altman¹, Said Attiya¹, Joel S. Bader¹, Lisa A. Bemben¹, Jan Berka¹, Michael S. Braverman¹, Yi-Ju Chen¹, Zhoutao Chen¹, Scott B. Dewell¹, Lei Du¹, Joseph M. Fierro¹, Xavier V. Gomes¹, Brian C. Godwin¹, Wen He¹, Scott Helgesen¹, Chun He Ho¹, Gerard P. Irzyk², Zivleszter C. Jando¹, Maria L. Alenque¹, Thomas P. Jarvie¹, Khama B. Birge¹, Jong-Bum Kim¹, James R. Knight¹, Janna R. Lanza¹, John H. Leamon¹, Steven M. Lefkowitz¹, Ming Lei¹, Jing L¹, Kenton L. Lohm Hong Lu¹, Vindo B. Makhijan¹, Keith E. McDade¹, Michael P. McKenna¹, Eugene W. Myers²,

Pengguang Yu¹ Richard F Beglev¹ & Jonathan M Rothberg

Elizabeth Nickerson¹, John R. Nobile¹, Ramona Plant¹, Bernard P. Puc¹, Michael T. Ronan¹, George T. Roth Gary J. Sarkis¹, Jan Fredrik Simons¹, John W. Simpson¹, Maithreyan Srinivasan¹, Karrie R. Tartaro¹, Alexander Tomasz², Kari A. Vogt¹, Greg A. Volkmer¹, Shally H. Wang¹, Yong Wang¹, Michael P. Weiner¹,

Genome sequencing in microfabricated

nature

ARTICLES

Vol 43715 September 2005 doi:10.1038/m

Mammoth DNA & Metagenome (2006)

- DNA collected from permafrost mammoth (28,000 years old)
- DNA extracted from 1g bone
- DNA sheared to 500-700 bp

- Sequenced using 454
- ~302,000 reads, length ~95 bp

 \bigstar Can use NGS for ancient DNA

★ First NGS metagenomics paper

REPORTS

Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA

Hendrik N. Poinar,^{1,2,3*} Carsten Schwarz,^{1,2} Ji Qi,⁴ Beth Shapiro,⁵ Ross D. E. MacPhee,⁶ Bernard Buigues,⁷ Alexei Tikhonov,⁸ Daniel H. Huson,⁹ Lynn P. Tomsho,⁴ Alexander Auch,⁹ Markus Rampp,¹⁰ Webb Miller,⁴ Stephan C. Schuster^{4*}

Poinar et al, Science 2006

How to Analyze Metagenomic Reads? (2006)

Basic idea (with Stephan Schuster at Penn State):

- BLASTX non-host reads against NCBI-nr
- Assign reads to NCBI taxonomy using naive LCA (lowest common ancestor) approach
- Develop GUI to explore assignments and alignments

2006 MEGAN analysis pipeline

How to Analyze Metagenomic Reads? (2006)

• MEGAN (MEtagenome ANalyzer 1.0)

Daniel Huson, 2021

Computational Bottleneck (2006)

- Compare all reads against the NCBI-nr protein database
- Year 2006:
 - 300,000 reads of length ~100bp
 - NCBI-nr: 3 million entries, ~1 billion letters

★ BLASTX took a couple of weeks on a small cluster

(NCBI-nr today: ~ 250 million entries)

Obesity-Associated Gut Microbiome

Turnbaugh *et al* (2006):

- Caecal microbial DNA of ob/ob, ob/+, +/+ mice
- Sanger sequencing:
 - 39.5 Mb
 - read length 750 bp
- 454 sequencing:
 - 160 Mb
 - read length 93 bp

- Change in relative abundance of Bacteroidetes and Firmicutes
- Change in functional capacity
 (toward energy harvesting)

Large Scale Human Gut Analysis

Vol 464 4 March 2010 doi:10.1038/nature08821

nature

MetaHIT 2010

ARTICLES

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin¹*, Ruiqiang Li¹*, Jeroen Raes^{2,3}, Manimozhiyan Arumugam², Kristoffer Solvsten Burgdorf⁴, Chaysavanh Manichanh⁵, Trine Nielsen⁴, Nicolas Pons⁶, Florence Levenez⁶, Takuji Yamada², Daniel R. Mende², Junhua Li^{1,7}, Junming Xu¹, Shaochuan Li¹, Dongfang Li^{1,8}, Jianjun Cao¹, Bo Wang¹, Huiqing Liang¹, Huisong Zheng¹, Yinlong Xie^{1,7}, Julien Tap⁶, Patricia Lepage⁶, Marcelo Bertalan⁹, Jean-Michel Batto⁶, Torben Hansen⁴, Denis Le Paslier¹⁰, Allan Linneberg¹¹, H. Bjørn Nielsen⁹, Eric Pelletier¹⁰, Pierre Renault⁶, Thomas Sicheritz-Ponten⁹, Keith Turner¹², Hongmei Zhu¹, Chang Yu¹, Shengting Li¹, Min Jian¹, Yan Zhou¹, Yingrui Li¹, Xiuqing Zhang¹, Songgang Li¹, Nan Qin¹, Huanming Yang¹, Jian Wang¹, Søren Brunak⁹, Joel Doré⁶, Francisco Guarner⁵, Karsten Kristiansen¹³, Oluf Pedersen^{4,14}, Julian Parkhill¹², Jean Weissenbach¹⁰, MetaHIT Consortium[†], Peer Bork², S. Dusko Ehrlich⁶ & Jun Wang^{1,13}

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.

• 576Gb of sequence from 124 individuals

Core of Human Gut Microbiome

- 57 species present in ≥90% of individuals with coverage >1%
- High variability
- Bacteroidetes and Firmicutes most abundant

BLASTX at Super Computer Center in Barcelona, then MEGAN analysis

Bacteroides uniformis Alistipes putredinis Parabacteroides merdae Dorea longicatena Ruminococcus bromii L2-63 Bacteroides caccae Clostridium sp. SS2-1 Bacteroides thetaiotaomicron VPI-5482 Eubacterium hallii Ruminococcus torques L2-14 Unknown sp. SS3 4 Ruminococcus sp. SR1 5 Faecalibacterium prausnitzii SL3 3 Ruminococcus lactaris Collinsella aerofaciens Dorea formicigenerans Bacteroides vulgatus ATCC 8482 Roseburia intestinalis M50 1 Bacteroides sp. 2 1 7 Eubacterium siraeum 70 3 Parabacteroides distasonis ATCC 8503 Bacteroides sp. 9 1 42FAA Bacteroides ovatus Bacteroides sp. 4 3 47FAA Bacteroides sp. 2 2 4 Eubacterium rectale M104 1 Bacteriodes xylanisolvens XB1A Coprococcus comes SL7 1 Bacteroides sp. D1 Bacteroides sp. D4 Eubacterium ventriosum Bacteroides dorei Ruminococcus obeum A2–162 Subdoligranulum variabile Bacteroides capillosus Streptococcus thermophilus LMD-9 Clostridium leptum Holdemania filiformis Bacteroides stercoris Coprococcus eutactus Clostridium sp. M62 1 Bacteroides eggerthii Butyrivibrio crossotus Bacteroides finegoldii Parabacteroides johnsonii Clostridium sp. L2-50 Clostridium nexile Bacteroides pectinophilus Anaerotruptas colihominis coccus gnavus cteroides intestinalis Bacteroides fragilis 3 1 12 Clostridium asparagiforme Enterococcus faecalis TX0104 Clostridium scindens Blautia hansenii

Daniel Huson, 2021

Permafrost Study (2011)

(Mackelprang et al, Science 2011)

- Introduction to microbiome analysis
- Protein alignment against the NCBI-nr database
- Who is out there, what are the doing, how do they compare?
- MEGAN taxonomic and functional binning
- The DIAMOND+MEGAN pipeline
- Long-read metagenomics

Translated Alignment

• Read:

```
>HISEQ:457:C5366ACXX:2:1101:5937:60460 (101 bases)
TTATATTAATTAGAAAAACCAATTAAAAAATACGAACGTTATGAAGAAGTACATTTGC...
```

• Translation (frame +3):

L I K K P I K N I N V M K K I I C	I	LI	R	K	P	I	K	Ν	Т	Ν	V	Μ	K	K	Y	I	С	
-----------------------------------	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

• Translated alignment:

```
>EEC52678.1 Length = 65
Score = 56 bits (135), Expect = 1e-05
Identities = 22/33 (67%), Positives = 27/33 (82%), Gaps = 0/33 (0%)
Frame = +3
Query: 3 ILIRKPIKNTNVMKKYICTVCEYIYDPEQGDPE 101
+L +K K VM+KYICT+CEY+YDPEQGDPE 101
```

```
Sbjct: 1 MLSKKKFKQKRVMEKYICTICEYVYDPEQGDPE 33
```


DIAMOND BLAST!

• Translated alignment tool DIAMOND

- DIAMOND replaces BLASTX on microbiome sequencing reads
- Very similar sensitivity to BLASTX on short reads
- Much, much faster...

Fast and sensitive protein alignment using DIAMOND

Benjamin Buchfink¹, Chao Xie^{2,3} & Daniel H Huson^{1,2} NATURE METHODS 2015

DIAMOND Performance

Buchfink et al, 2015

Two volunteers, subject 1 and subject 2
 Ciprofloxacin Administration
 Post-treatment Period

- 2 x 6 stool samples
- Shotgun sequencing
 - ~60 million reads per sample (101 bp per read)
 - ~800 million reads in total
- Initial analysis: compare against NCBI-nr protein database

Willmann et al (2015) J. Antimicrobial Agents and Chemotherapy

Performance of DIAMOND+MEGAN

• 12 human gut samples, total 816 million HiSeq reads

Sample	Reads	DIAMOND (s)	Alignments	Aligned reads	Meganizer (s)
Alice 0	66 393 401	19 062	627 405 772	44 900 227	9 299
Alice 1	64 923 975	15 771	595 715 349	43 498 105	11 338
Alice 3	55 092 349	13 435	515 249 349	37 675 494	8 621
Alice 6	66 289 376	16 801	910 892 059	52 627 776	11 771
Alice 8	57 957 661	14 134	790 946 244	45 358 448	13 911
Alice 34	64 380 386	15 615	608 114 143	44 741 897	11 962
Bob 0	61 232 588	14 573	825 213 917	48 882 884	12 058
Bob 1	65 763 766	16 203	841 038 616	51 408 892	12 270
Bob 3	89 034 641	34 598	1 233 571 041	72 017 720	15 789
Bob 6	89 339 172	27 333	1 138 796 522	70 344 161	15 507
Bob 8	78 001 118	19 734	1 049 831 855	63 336 241	13 423
Bob 34	57 627 119	15 406	780 844 319	45569158	11 433
Total	816 035 552	222 665	9 917 619 186	620 360 003	Max: 15 789
Time		≈ 62 h		Construction of Party and Construction	≈ 5 h

doi:10.1371/journal.pcbi.1004957.t001

• Complete analysis in 62+5 hours on a single server

EBERHARD KARLS

and Medical Informatics

Bioinformatics

- Introduction to microbiome analysis
- Protein alignment against the NCBI-nr database
- Who is out there, what are the doing, how do they compare?
- MEGAN taxonomic and functional binning
- The DIAMOND+MEGAN pipeline
- Long-read metagenomics

Three Computational Questions

Q3: How do they compare?

Daniel Huson, 2021

- Introduction to microbiome analysis
- Protein alignment against the NCBI-nr database
- Who is out there, what are the doing, how do they compare?
- MEGAN taxonomic and functional binning
- The DIAMOND+MEGAN pipeline
- Long-read metagenomics

Interactive MEGAN Analysis

Gene-centric alignment and assembly

H. et al, MEGAN Community Edition, 2016

Taxonomic Content

ASARI human gut microbiome

/ww.compostinfo.com/tutorial/microbes.htm

Q1: Who is out there?

Taxonomic Content

Taxonomic Content

Drill Down to Details...

Comparison

All 12 ASARI human gut samples together

Comparison

All 12 ASARI human gut samples together

E.g.: Does the Microbiome Rebound?

Functional Content

Functional Content

Functional Content

36.

MEGAN Binning

- Taxonomic binning using: NCBI taxonomy or GTDB
- Functional binning using:
 - InterPro families (Mitchell et al, 2015)
 - eggNOG/COG (Powell et al, 2014)
 - SEED (Overbeek et al, 2014)
 - KEGG (license required) (Kanehisa M & Goto S, 2000)
 - EC numbers

- Introduction to microbiome analysis
- Protein alignment against the NCBI-nr database
- Who is out there, what are the doing, how do they compare?
- MEGAN taxonomic and functional binning
- The DIAMOND+MEGAN pipeline
- Long-read metagenomics

DIAMOND+MEGAN

Meganizer program available with MEGAN

- Performs taxonomic and functional binning of reads
- Indexes all data
- Appends results to the DIAMOND output file
- Reduces the total number of files generated in a metagenome analysis to 2

DIAMOND+MEGAN Pipeline

Running DIAMOND

- 1. Download and install DIAMOND on a server:
 - wget http://github.com/bbuchfink/diamond/releases/ download/v2.0.9/diamond-linux64.tar.gz
 - tar -xzf diamond-linux64.tar.gz
 - Or: conda install -c bioconda diamond
- 2. Obtain the latest NCBI-nr database:

wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz

3. Build the DIAMOND index:

diamond makedb --in nr.gz -d **nr**

4. Run DIAMOND on a fasta or fastq file:

diamond blastx -d nr -q reads.fastq.gz -o reads.daa -f 100

Running Meganizer

- 1. Download MEGAN
 - installer MEGAN_Community_unix_6_21_10.sh and
 - mapping file megan-map-Jan2021.db.zip from:

https://software-ab.informatik.uni-tuebingen.de/download/megan6

2. Run the installer in console mode:

- ./MEGAN_Community_unix_6_21_10.sh -c
- **3**. Unzip the mapping file:

unzip megan-map-Jan2021.db.zip

4. 6. Run meganizer on each DIAMOND output file: MEGAN/tools/daa-meganizer -i reads.daa -mdb megan-map-Jan2021.db

Running MEGAN

1. Download MEGAN installer e.g. MEGAN_Community_macos_6_21_9.sh from:

https://software-ab.informatik.uni-tuebingen.de/download/megan6

- 2. Double-click to install in interactive mode
- 3. Download all meganized DAA files
- 4. Launch MEGAN and then use File \rightarrow Open

Alternatively, run the Megan-Server program on your server and then access files directly within MEGAN

- Introduction to microbiome analysis
- Protein alignment against the NCBI-nr database
- Who is out there, what are the doing, how do they compare?
- MEGAN taxonomic and functional binning
- The DIAMOND+MEGAN pipeline
- Long-read metagenomics

Microbiome Read-Length Paradox

- Short reads are short and plentiful...
 - So: short read microbiome datasets should benefit from assembly
 - But: the resulting sequences are usually disappointingly short...
 - Usually far from chromosomal length....
- Long reads are long...
 - So: usually longer than average assembled short reads
 - But: assembly results in *very* long sequences
 - Complete chromosomes can be obtained...
- Assembly of short reads is optional, but long reads should always be assembled...

UNIVERSITAT TUBINGEN Institute for Bioinformatics and Medical Informatics

• Assembly of metagenomic short reads produces large numbers of tiny contigs - never complete chromosomes

Zhu et al, Microbiome (2018)

Long-Read Metagenomics

- EBPR waste-water bio-reactor
- MinION sequencing 2018
 - Reads: ~695,000 (~6Gb)
 - Length: ~9 kb mean (2 bp 66 kb)
 - Short Read Archive SRX5120474

Short report | Open Access | Published: 16 April 2019

Annotated bacterial chromosomes from frame-shiftcorrected long-read metagenomic data

Krithika Arumugam, Caner Bağcı, Irina Bessarab, Sina Beier, Benjamin Buchfink, Anna Górska, Guanglei Qiu, Daniel H. Huson & Rohan B. H. Williams 🖂

Microbiome 7, Article number: 61 (2019) Cite this article

Joint work with: Rohan Williams, Krithika Arumgam, Irina Bessarab and others at NUS and SCELSE

Krithika Arumugam

Long-Read Metagenome Assembly

- Input:
 - Reads: ~695,000 (~6Gb)
 - Length: ~9 kb mean (2 bp 66 kb)

• Assembly using Unicycler (miniasm and racon) (Li 2016, Vaser *et al* 2017, Wick *et al*, 2017)

- Output:
 - Contigs: ~1,700 (~ 104 Mb)
 - Length: ~ 61 kb mean (1.3 kb 5.2 Mb)

EBERHARD KARLS UNIVERSITÄT

DIAMOND+MEGAN

EBERHARD KARLS

UNIVERSITÄT

Institute for Bioinformatics and Medical Informatics

Taxonomic Bins \geq 50%. Complete

	DIAMOND+MEGAN	Unicycler	Unicycler Total Aligned Average			Chec	кМ	Prokka		
	taxonomic bin	contigs	(Mb)	(Mb)	coverage	Complete.	Contam.	rRNA	tRNA	CDS
High q	uality draft genomes:									
B1	Bacteroidetes bacterium OLB12	1	4.2	3.5	57.3	95%	0.1%	6	39	4,163
B2	$Candidatus \ Accumulibacter \ SK-02$	1	5.2	4.1	384.2	94%	0.6%	4	53	4,915
B3	Chlamydiia (class)	1	2.8	1.8	48.8	94%	2%	6	39	3,387
B4	$Gamma proteo bacteria~({\sf class})$	43	4.7	3.0		93%	2%	6	52	4,833
	-longest contig		2.7	1.6	25.1	93%	0.2%	3	40	3,359
B5	Bacteroidetes bacterium OLB8	1	3.8	3.0	52.1	93%	1%	6	37	3,394
B6	Rhodos pirillales (order)	1	4.4	3.0	29.5	92%	0.5%	3	47	4,015
B7	Chlorobi bacterium OLB5	1	3.5	2.5	38.7	88%	1%	3	41	4,131
Mediur	n quality draft genomes:									
B8	Thauera (genus)	25	4.6	4.0		89%	4%	12	64	4,040
	-longest contig		0.8	0.7	32.7	14%	0%	0	5	672
B9	Sphingobacteriales bacterium 44-15	59	3.2	2.8		76%	1%	2	17	2,953
	-longest contig		0.2	0.1	10.2	0%	0%	0	0	172
B10	Bacteroidetes (phylum)	43	3.9	2.6		72%	7%	1	12	1,997
	-longest contig		1.2	0.8	14.1	32%	0%	0	3	807
B11	Candidatus Contendobacter B J11	39	2.5	2.0		59%	9%	2	37	2,668
	-longest contig		0.3	0.3	15.4	19%	0%	0	7	295
Low qu	ality draft genomes:									
B12	Betaproteobacteria (class)	111	6.6	5.5		89%	79%	6	71	4,655
	-longest contig		0.4	0.3	37.1	10%	0%	0	1	372
B13	Nitrospira (genus)	34	4.2	3.7		83%	13%	0	6	563
	-longest contig		1.1	0.9	17.6	27%	0%	0	2	99
B14	Chloroflexi (phylum)	151	5.4	4.3		71%	29%	0	11	3,565
	-longest contig		0.2	0.2	13.3	8%	0%	0	1	86

Arumugam et al, 2019

CheckM (Parks et al. 2014)

Prokka (Seemann, 2014)

Assembled Chromosomes

Long-Read Analysis Pipeline

Long-Read Analysis Pipeline

Running Assembly

There is much active research into long-read assembly. Unicycler is one of many tools.

- Install the *Unicycler* assembler as follows:
- git clone https://github.com/rrwick/Unicycler.git
 cd Unicycler

make

• Or: conda install -c bioconda unicycler

(Li 2016, Vaser *et al* 2017, Wick *et al*, 2017)

Running Assembly

• Run Unicycler as follows:

unicycler -l reads.fq.gz -o reads_asm --keep 3 -t 16

- Option -1 reads.fq.gz to specify file of long reads
- Option -o reads_asm to specify output directory
- Option -keep 3 to keep intermediate files
- Option -t 16 to specify the number of threads

• Output: reads_asm/assembly.fasta

(Li 2016, Vaser *et al* 2017, Wick *et al*, 2017)

Running DIAMOND on Assemblies

• Run as for short reads, but with additional options:

diamond blastx -d nr -q assembly.fasta -o assembly.daa

-f 100 -F 15 --range-culling --top 10

- Option -F 15 to activate frame-shift alignment
- Options --range-culling --top 10 to ensure that alignments along the whole sequence are reported

Running Meganizer on Assemblies

• Run as for short reads, but with an additional option:

MEGAN/tools/daa-meganizer -i assembly.daa
-mdb megan-map-Jan2021.db -1

• Option -1 to specify long-read mode

Detailed Protocols

ECURRENT PROTOCOLS
PROTOCOL 🖻 Open Access 🞯 🛈 😒
DIAMOND+MEGAN: Fast and Easy Taxonomic and Functional Analysis of Short and Long Microbiome Sequences
Caner Bağcı, Sascha Patz, Daniel H. Huson 🔀

First published: 03 March 2021 | https://doi.org/10.1002/cpz1.59

https://doi.org/10.1002/cpz1.59

Hands-on Session

<u>https://software-ab.informatik.uni-tuebingen.de/</u> <u>download/public/tutorial-aug2021/welcome.html</u>

DIAMOND+MEGAN Tutorial ISME 2-August-2021 Download Page

1. Presentation:

- Video: Introduction-to-DIAMOND+MEGAN-August2021.mp4
- Slides: Introduction-to-DIAMOND+MEGAN-August2021.pdf
- Both: <u>04-Presentation,zip</u>

2. Tutorial outline:

- DIAMOND+MEGAN-Tutorial-August-2021.pdf.
- 3. MEGAN program installers:
 - Mac OS: <u>MEGAN_Community_macos_6_21_10.dmg</u>.
 - Linux: MEGAN_Community_unix_6_21_10.sh.
 - Windows: MEGAN_Community_windows-x64_6_21_10.exe.
 - Other: MEGAN download page

4. Short read datasets:

- One million reads each: 01-Short-Read-Data-1mio.zip (2.5 GB)
- Summary only: 01-Short-Read-Data-summary.zip (1 MB)
- 5. Long-read dataset:
 - Full dataset: 02-Long-Read-Data-full.zip (234 MB)
 - Summary only: <u>02-Long-Read-Data-summary.zip</u> (0.1 MB)

6. Papers:

• 03-Papers.zip.

Daniel Huson, August 2021, University of Tuebingen

Short-Read Data

Alice and Bob, 6 time points each

- Each subsampled to 1 mio reads:
 - <u>01-Short-Read-Data-1mio.zip</u> (2.5 GB)
- Summary only:
 - <u>01-Short-Read-Data-summary.zip (1 MB)</u>

Long-Read Data

Nanopore reads from enrichment reactor:

• Full dataset:

- <u>02-Long-Read-Data-full.zip</u> (234 MB)
- Summary only:

Short report | Open Access | Published: 16 April 2019

Qiu, Daniel H. Huson & Rohan B. H. Williams 🖂

Microbiome **7**, Article number: 61 (2019) Cite this article

corrected long-read metagenomic data

<u>02-Long-Read-Data-summary.zip</u> (0.1 MB)

Joint work with:

- Benjamin Albrecht, Caner Bagci, Xi Chen, Timo Lucas, Sascha Patz
 & Lars Angenent
 Tübingen
- Irina Bessarab, Krithika Arumugam and Rohan Williams SCELSE Singapore

Funding:

- Deutsche Forschungsgemeinschaft (MAIRA & BinAC)
- Life Sciences Institute at NUS
- NRF/MOE and NRF-EW, Singapore

Institute for Bioinformatics and Medical Informatics