
AnnoTree Databases Built Script - Manual

In the following, the bash script ”update annotree db.sh”, which, based on the latest AnnoTree re-
lease, automatically builds the protein and mapping databases needed for the application in the DIA-
MOND+MEGAN pipeline, is described in detail. It takes the download links to the latest versions of
the AnnoTree archaea and bacteria databases as command line arguments, utilizes two python scripts
and outputs an up-to-date protein sequence database in FASTA format as well as an up-to-date map-
ping database with mappings of the protein accessions to the NCBI taxonomy, GTDB taxonomy,
KEGG orthology IDs, PFAM IDs and TIGRFAM IDs in the SQLite3 DB format.

Prerequisites. In order to run the script, SQLite3 must be installed and a MySQL server needs to
be setup and running with a user being created for which the login credentials are known. It is im-
portant that no database starting with ”gtdb ” is already present in the MySQL server. Furthermore,
the MySQL user must have all privileges granted that are needed for creating, editing and deleting
MySQL databases.

To run the script, the URLs to the AnnoTree databases are passed as command line arguments like:

1 bash update_annotree_db.sh URL -bacteria URL -archaea

The bash script first asks for the MySQL credentials (1, 2), checks them for correctness (4) and, if
either the user or the password is incorrect, repeats so until valid credentials are provided (4-9).

1 read -p "MySQL username: " mysqlUsername

2 read -sp "MySQL password: " mysqlPassword

3

4 while ! mysql -u $mysqlUsername -p$mysqlPassword -e"quit"

5 echo "MySQL Username or Password incorrect. Please try again."

6 read -p "MySQL username: " mysqlUsername

7 read -sp "MySQL password: " mysqlPassword

8 echo

9 done

When the credentials are verified, a temporary working directory called ”annotree tmp” is created
at the path of deployment (10) and the MEGAN specific mapping file for GTDB IDs ”gtdb.map” is
downloaded from the MEGAN download page into the tmp directory (11).

10 mkdir annotree_tmp

11 wget -O annotree_tmp/gtdb.map https ://.../ gtdb.map

For each of the two passed URLs (12, 13), the script then downloads (14), extracts (15) and imports
(17) the database dump into MySQL while directly removing unneeded data to use as little disk space
as possible (16, 19). When successfully imported into MySQL, the database handle is determined in
order to access it inside the MySQL server (18).

12 for var in "$@"
13 do

14 wget -O annotree_tmp/annotree.sql.tar.gz "$var"
15 tar -xzf annotree_tmp/annotree.sql.tar.gz -C annotree_tmp/

16 rm annotree_tmp/annotree.sql.tar.gz

17 mysql -u $mysqlUsername -p$mysqlPassword < annotree_tmp /*. sql

18 name=$(grep "CREATE DATABASE" annotree_tmp /*.sql -m 1 | grep -o ’\bgtdb\w*’)

19 rm annotree_tmp /*.sql

Next, the protein sequence database is built. The relevant data for this is stored in the AnnoTree ’pro-
tein sequences’ table. Thus, the script extracts and passes it to a python script (”prot seqs to faa.py”)
which builds the database in FASTA format and saves it in the tmp directory.

20 mysql -u $mysqlUsername -p$mysqlPassword -N \

-e "SELECT * FROM ${name}. protein_sequences;" \

| python3 scripts/prot_seqs_to_faa.py $name

1

prot seqs to faa.py
The script builds the FASTA protein sequence database but also creates the ”accession2gtdb id.tsv”
file that is important for building the mapping database (4, 5). For this, it reads the data from the
’protein sequences’ table line by line (7-11). Each line corresponds to one entry in the table with the
attribute data being delimited by tabs. Each line gets stripped to remove the trailing newline command
and is split at tabs which yields the gene ID, GTDB ID and protein sequence for that entry (13). Gene
ID and GTDB ID get concatenated with a double underscore (” ”) to form the accession (14) and
possible dots are replaced by underscores (15). This is important to avoid issues with MEGAN which
internally processes accessions and splits them at dots. Pairs of accession and GTDB ID are written
into the ”accession2gtdb id.tsv” file delimited by a tab (16) and FASTA entries with the accession as
the header and the protein sequence are written into the ”prot seqs &{name}.faa” file (17).

Listing 1: prot seqs to faa.py
1 import sys

2 name = sys.argv [1]

3

4 out1 = open("annotree_tmp/accession2gtdb_id.tsv", "w")

5 out2 = open("annotree_tmp/prot_seqs_ {}. faa".format(name), "w")

6

7 while True:

8 try:

9 line = input()

10 except EOFError:

11 break

12

13 gene_id , gtdb_id , seq = line.strip ().split("\t")

14 accession = "{}__{}".format(gene_id , gtdb_id)

15 accession = accession.replace(".", "_")

16 out1.write("{}\t{}\n".format(accession , gtdb_id))

17 out2.write(" >{}\n{}\n".format(accession , seq))

18

19 out1.close()

20 out2.close()

At this point, the protein database in FASTA format for the respective AnnoTree database is built
and stored in the tmp directory as ”prot seqs &{name}.faa” and the python script terminates.

Next, the bash script extracts the required data for building the AnnoTree mapping database from
the respective source tables and caches it in the tmp directory (21-24). When all relevant data is
extracted, the AnnoTree source database can be deleted to free disk space (25).

21 mysql -u $mysqlUsername -p$mysqlPassword -N \

-e "SELECT gene_id , gtdb_id , kegg_id FROM ${name}. kegg_top_hits;" \

> annotree_tmp/kegg_top_hits.tsv

22 mysql -u $mysqlUsername -p$mysqlPassword -N \

-e "SELECT gene_id , gtdb_id , pfam_id FROM ${name}. pfam_top_hits;" \

> annotree_tmp/pfam_top_hits.tsv

23 mysql -u $mysqlUsername -p$mysqlPassword -N \

-e "SELECT gene_id , gtdb_id , tigrfam_id FROM ${name}. tigrfam_top_hits;" \

> annotree_tmp/tigrfam_top_hits.tsv

24 mysql -u $mysqlUsername -p$mysqlPassword -N \

-e "SELECT gtdb_id , ncbi_taxid FROM ${name}. node_tax;" \

> annotree_tmp/node_tax.tsv

25 mysql -u $mysqlUsername -p$mysqlPassword -e "DROP DATABASE ${name};"

Then, another python script (”create mapping file.py”) is deployed to build the mapping database in
accordance to the schema set by the original ’mappings’ table.

26 python3 scripts/create_mapping_file.py ${name}

create mapping file.py
The first half of the script reads all the required data from the previously created cache files. It strips
and splits each line, extracts relevant information and stores it as key-value pairs in python dictionaries,
which are hash tables.
One hash table is created to map the MEGAN specific integers to their corresponding GTDB IDs (4).
For this, individual lines of the ”gtdb.map” file are read in (5, 6) and after the strip-split operation

2

(7), the obtained lists are checked if they contain exactly five items (8). This is done because internal
nodes of the GTDB taxonomy are also represented in this file which have no genome IDs assigned,
thus having one item less per line and by checking the split lines for their length, those without genome
ID can be excluded (see Table 1). If the respective list is of length five, the information of interest,
namely the custom MEGAN id and the corresponding GTDB can be accessed by index (9, 10) and
stored in the hash tables with GTDB ID as key and MEGAN specific integer as value (11).

Listing 2: create mapping file.py

1 from random import sample

2 import sys

3

4 cmm_dict = {} # custom megan mapping dict

5 with open("annotree_tmp/gtdb.map", "r") as file:

6 for line in file:

7 line = line.strip().split("\t")

8 if len(line) == 5:

9 cid = line [0] # custom megan id

10 gid = line [4] # gtdb id

11 cmm_dict[gid] = cid

Table 1: Exemplary tabular extract from ”gtdb.map”. The MEGAN specific integers are stored in the
leftmost column and the GTDB genome accessions are stored in the rightmost column.

1000000028 Enterobacteriaceae -1 5
1000000067 Escherichia -1 98
1000000229 Escherichia flexneri -1 100
1950000001 Shigella flexneri 4526576 0 RS GCF 000953035
1000124975 Escherichia coli O26:H11 10524 5546337 0 RS GCF 002766295
1000123926 Escherichia coli KCJK6199 5330691 0 RS GCF 002810665

A second hash table is created to access NCBI taxonomy IDs by their corresponding GTDB IDs (12).
The required data is read from the cache file that was created by extracting the information from the
AnnoTree ’node tax’ table (13, 14). Each line consists of only the GTDB ID and the NCBI taxonomy
ID. However, after stripping and splitting (15), the GTDB ID needs to be split a second time to remove
possible version numbers that MEGAN doesn’t support (16). Both values then are stored in the hash
table with GTDB ID as key and NCBI taxonomy ID as value (17).

12 ntax_dict = {} # node taxonomy dict

13 with open("annotree_tmp/node_tax.tsv", "r") as file:

14 for line in file:

15 gid , tid = line.strip().split("\t") # gtdb id , taxonomy id

16 gid = gid.split(".")[0] # remove version numbers

17 ntax_dict[gid] = tid

Next, three hash tables are built and filled to access KEGG IDs/PFAM IDs/TIGRFAM IDs by protein
accession (18-20). The required data is read from the cache files that were created by extracting the
information from the AnnoTree ’* top hits’ tables (23, 24). Since the data is structured identically
for all three, a for-loop is used to build each of the three hash tables successively (22). Each line in
the files consists of the gene ID, GTDB ID and KEGG/PFAM/TIGRFAM ID and after stripping and
splitting (25), gene ID and GTDB ID are concatenated by a double underscore identical to how the
accessions were created during the build of the AnnoTree protein database (26, 27). The accession
and the corresponding KEGG/PFAM/TIGRFAM ID are then stored in the hash table as key-value
pairs, and if the accession already is present in the hash table, the KEGG/PFAM/TIGRFAM ID gets
appended to the preexisting list of IDs (28-31).

18 kth_dict = {} # kegg_top_hits dict

19 pth_dict = {} # pfam_top_hits dict

20 tth_dict = {} # tigrfam_top_hits dict

21

22 for col , dct in [["kegg", kth_dict], ["pfam", pth_dict], ["tigrfam", tth_dict]]:

23 with open("annotree_tmp /{} _top_hits.tsv".format(col), "r") as file:

24 for line in file:

3

25 gene_id , gtdb_id , col_id = line.strip().split("\t")

26 accession = "{}__{}".format(gene_id , gtdb_id)

27 accession = accession.replace(".", "_")

28 if accession not in dct:

29 dct[accession] = [col_id]

30 else:

31 dct[accession]. append(col_id)

When all hash tables are filled, the script opens and reads the ”accession2gtdb id.tsv” file that was
created during the protein sequence database built (33, 34). Each line in the file corresponds to one
protein sequence and holds its accession together with the associated GTDB ID. The script reads each
line and strips and splits it into accession and GTDB ID, based on which the AnnoTree ’mappings’
table for the AnnoTree mapping database gets build (35, 36). The GTDB ID is used to obtain the
NCBI taxonomy ID (37) and the MEGAN specific GTDB integer (38) from the respective hash tables.
Based on the accession, the associated KEGG IDs can be accessed (40). (Note: The functionality
for KEGG, PFAM and TIGRFAM is identical here and thus only the code for KEGG is show which
is transferable to the other two.) However, due to MEGAN currently only supporting one KEGG
ID per accession, if multiple KEGG ID are assigned to one accession, one is randomly picked as
the representative (41). Subsequently, the chosen KEGG ID needs to be altered to match MEGAN
requirements. For this, the leading letter together with all leading zeros has to be removed (42, 43).
If an accession has no corresponding KEGG ID, an empty string is used as a placeholder (45).
Having gathered all the relevant information, the script then formats the data according to the re-
quirements set by the original ’mappings’ table and writes them into an output file (49).

32 with open("annotree_tmp/mapping_ {}.tsv".format(sys.argv [1]), "w") as out:

33 with open("annotree_tmp/accession2gtdb_id.tsv", "r") as file:

34 for line in file:

35 accession , gid = line.strip ().split("\t")

36 gid = gid.split(".")[0] # remove version numbers

37 taxonomy = ntax_dict[gid]

38 gtdb = cmm_dict[gid]

39 try:

40 kegg_list = kth_dict[accession]

41 kegg = sample(kegg_list , 1)[0] # random pick

42 kegg = kegg [1:] # drop "K" (K00086 -> 00086)

43 kegg = int(kegg) # drop zeros (00086 -> 86)

44 except KeyError:

45 kegg = ""

46 pfam = ...

47 tigrfam = ...

48

49 out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(accession , \

taxonomy , gtdb , "", "", "", "", kegg , pfam , tigrfam))

The mapping files for both the AnnoTree bacteria as well as the AnnoTree archaea databases are
stored in the tmp folder and after iterating over the ”accessions2gtdb id.tsv” file the python script
terminates.
When the ”create mapping file.py” script finishes, the files used for caching the AnnoTree data are no
longer needed and thus are removed by the bash script(27-31), which ends one iteration of the for-loop
(32).

27 rm annotree_tmp/node_tax.tsv

28 rm annotree_tmp/kegg_top_hits.tsv

29 rm annotree_tmp/pfam_top_hits.tsv

30 rm annotree_tmp/tigrfam_top_hits.tsv

31 rm annotree_tmp/accession2gtdb_id.tsv

32 done

When the for-loop finishes after processing both URLs for the AnnoTree bacteria and archaea databases,
the bash script removes the ”gtdb.map” mapping file (33) and joins and removes the protein se-
quence FASTA files as well as the two precursor mapping databases (34-37). The resulting ”an-
notree prot seqs.faa” file is the finished protein database that DIAMOND can process.

33 rm annotree_tmp/gtdb.map

34 cat annotree_tmp/prot_seqs_* > annotree_prot_seqs.faa

35 rm annotree_tmp/prot_seqs_*

36 cat annotree_tmp/mapping_* > annotree_tmp/mapping.tsv

37 rm annotree_tmp/mapping_*

4

Subsequently, the AnnoTree mapping database is built by importing the ’info’ table, which was copied
from the original mapping database and extended to include PFAM and TIGRFAM, into a new SQLite3
database called ”annotree.db” (38) and creating and filling the ’mappings’ table in the same database
(39-43).

38 cat scripts/sqlite_info.sql | sqlite3 annotree.db

39 sqlite3 annotree.db <<’END_SQL ’

40 CREATE TABLE mappings (Accession PRIMARY KEY , Taxonomy INT , GTDB INT , EGGNOG INT , \

INTERPRO2GO INT , SEED INT , EC INT , KEGG INTEGER , PFAM INTEGER , TIGRFAM INTEGER) \

WITHOUT ROWID;

41 .separator \t

42 .import annotree_tmp/mapping.tsv mappings

43 END_SQL

The resulting ”annotree.db” file is the finished mapping database that Meganizer can process.
After removing the now obsolete mapping file and tmp direcory (44, 45), the bash script terminates
and the desired protein and mapping databases are located in the same directory as the bash script.

44 rm annotree_tmp/mapping.tsv

45 rm -r annotree_tmp

5

